Experimental report on deep learning of symbolic value data

- Chen Shuyue
- ShenZhen University

The effect of learning rate on neural network

hash									
scale	Training accuracy	Testing accuracy							
1 layer, 100 node	0.5113938	0.510315							

Iteration 1, loss = 0.69353438Iteration 2, loss = 0.69301058Iteration 3, loss = 0.69297232Iteration 4, loss = 0.69297418Iteration 5, loss = 0.69296742Training loss did not improve more than tol=0.000100 for two consecutive epochs. Stopping.

The effect of learning rate on neural network

If the learning rate is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge

01 The effect of layer on training accuracy

01 The effect of data set size on training accuracy

01 The effect of node size on training accuracy

hide	den_laye	e <mark>r_nu</mark>	m = 1	hidden_layer_num = 2					
Training accuracy	Testing accuracy	time	nuuron_num	Training accuracy	Testing accuracy	time	nuuron_num		
0.794	0.796	27.9	10	0.796	0.798	27.0	10		
0.818	0.819	45.5	20	0.822	0.814	36.7	20		
0.831	0.821	41.9	30	0.839	0.831	47.2	30		
0.832	0.826	48.7	40	0.832	0.815	52.3	40		
0.840	0.830	59.4	50	0.841	0.822	53.0	50		
0.844	0.832	71.4	60	0.853	0.838	69.0	60		
0.848	0.838	84.7	70	0.864	0.842	82.5	70		
0.849	0.832	76.0	80	0.867	0.843	98.1	80		
0.854	0.840	93.9	90	0.865	0.843	91.3	90		
0.851	0.838	97.4	100	0.870	0.847	96.9	100		

The testing accuracy and training accuracy of neural network will increase with the increase of network complexity under the condition of underfitting

Over-complex network structure will lead to over-fitting

	Training accurac y	Testing accuracy	Time	Training accuracy	Testing accuracy	Time	Training accuracy	Testing accuracy	Time	Training Testing accuracy accuracy	Time
	0.656	0.657	9.4	0.879	0.856	210.3	0.892	0.843	156.7	0.752 0.755	15.1
active unction		$S(x) = \frac{1}{1+x}$	$\frac{1}{e^{-x}}$	tanhx	= $rac{sinhx}{coshx}$ =	$=\frac{e^x-e^{-x}}{e^x+e^{-x}}$	f(x)	= max(0, z)	r)	$f\left(x\right)=x$	

The sigmoid active function performs poorly when dealing with symbolic value data sets

hidden	Traini	Testin	Trai	Testin	Traini	Testin	Traini	Testin	Traini	Testin	Traini	Testin
layer	ng	g	ning	g	ng	g	ng	g	ng	g	ng	g
num =	accur	accura	accu	accur	accur	accur	accur	accur	accur	accur	accur	accur
2	acy	cy	racy	acy	acy	acy	acy	acy	acy	acy	acy	acy
Neuron	Car Evaluation		Cł	ness	Conn	ect-4	mush	iroom	Nur	sery	Pokei	rhand
_num	(1728, 6)		(319	16, 36)	(6755	57, 42)	(8124	4, 22)	(1296	50, 8)	(10250	10, 10)
100	1	0.995	1	0.979	0.839	0.831	1	0.996	1	0.999	0.991	

The neural network performs well in processing symbolic value data sets

THANK YOU!